Human Factors in Cockpit Automation

Presented at: CAMI

By: Melchor J. Antuñano, M.D., M.S.
 Director, Civil Aerospace Medical Institute

Date: 2011
Human Factors is about people; it is about people in their working and living environments, and it is about their relationship with equipment, procedures and the environment.”

“Just as important, it is about their relationship with other people. Its twin objectives can be seen as safety and efficiency.”
Why Human Factors are Important?

- The majority of all aviation accidents are due to human factors (not necessarily pilot error).
- Most aviation accidents and incidents due to human factors are preventable.
- ICAO has recommended that all pilots receive training in human factors.
Following their first flight on Dec/17/1903 the Wright Brothers Introduced the Automatic Stabilizer in 1908
Technology has Enabled Aviation Innovations
'Time to fasten your seatbelt, sir. The front end has landed.'
The Future?

JOHN McMASTERS’ SUPER CLIPPER

A supersized flying boat could pack passengers in wings, pontoons, and fuselage with room left over for play areas.
Manned Cloud
(Carry 55 passengers at 105 mph from Paris to Madagascar at 9,800 feet by 2020)
Aeroscraft
(Carry 250 passengers 6,000 miles at 174 mph)
Aeroscraft ML866

- Speed Range: 0-138 mph
- Max Operating Altitude: 0-12,000 ft
- Max Range: 3,100 miles
- Overall Length: 210 ft
- Overall Width: 118 ft
- Overall Height: 56 ft
- Cabin Area: 5,382 ft2
Lockheed Martin
P-791 Hybrid Airship
Sky Hook – JHL-40

Lift 40 ton sling load and carry it 200 miles
Viper – Homebuilt Kit
Eclipse 500 – Very Light Jet
Sikorsky X2
High-Speed
Coaxial-Rotor
Helicopter
Demonstrator

Reached 258 mph

Target is 288 mph

20% Less lift needed from the main rotor
Performance Information:

- The Transition® is being designed to be a factory certified Light Sport Aircraft (LSA).
- Two seats side-by-side & automotive-style entry.
- GTOW: 1,320 lbs (600 kg).
- Fuel Capacity: 20 gal (120 lbs / 54 kg).
- Fuel: Super-unleaded avgas.
- Fuel Consumption: 4.5 gph.
- Engine: 100 hp Rotax 912 S (four-stroke).
- Vs = 45 kts (51 mph, 85 km/hr).
- Vr = 70 kts (80 mph, 130 km/hr).
- Cruise Speed: 100 kts (115 mph, 185 km/hr).
- Range: 400 nm (460 mi, 740 km).
- Takeoff Distance over 50 ft obstacles: 1,700 ft (520 m).
- Wing span: 27.5 ft (8.4 m).
- Length: 16.75 ft (5.1 m).
- Height: 6.75 ft (2.1 m).
- On-Road Width: 6.75 ft (2.1 m).
- Capable of highway speeds on the road.
- Engine: 4-cylinder, 912 S four-stroke engine.
- Transmission: 3-speed automatic.
- Fuel system: 20 gal (120 lbs / 54 kg) avgas.

Ordering Information:

- Anticipated purchase price: $194,000.
- Deposit amount: $10,000.
- All deposits are held in individual accounts at Cambridge Trust Company and remain fully refundable until a Purchase Agreement is executed.
- Contact sales@transition.com for more information or call +1-781-491-0812.

Development Schedule:

- Drive testing: Fall 2008.
- First flight: Late 2008.
- First delivery: Late 2009.
- Production schedules are filling quickly.
- Reserve yours today!
MS Watersports GmbH
JetLev-Flyer
$128K
1st Annual Personal Air Vehicle (PAV) Challenge
NASA Centennial Challenges

August 4, 2007
Prize purse of $250,000

- 150-200 mph car that flies above gridlock without traffic delays
- Quiet, safe, comfortable and reliable
- Simplified operation akin to driving a car
- As affordable as travel by car or airliner
- Near all-weather, on-demand travel enabled by synthetic vision
- Highly fuel efficient and able to use alternative fuels
- Up to 800 mile range
- Short runway use
Prizes were awarded for:

- Shortest Runway
- Lowest Noise
- Highest Top Speed
- Best Handling Qualities
- Most Efficient

The grand Vantage Prize of $100,000 went to the best combination of overall performance.

This was the first of five annual competitions to launch NASA's vision for a new age of environmentally-friendly personal air travel.
Human Factors in Cockpit Automation

Federal Aviation Administration
Civilian uses of UAS include:

- aerial photography
- aerial surveying
- monitoring forest fires
- law enforcement
- protecting borders and ports
In the US alone there are about 50 companies, universities, and government organizations developing and producing 155 UAS designs.
Since July 2005 the FAA has issued 71 Special Airworthiness Certificates for 17 different types of UAV/UAS.
In the US alone there are about 50 companies, universities, and government organizations developing and producing 155 UAS designs.

The SunSailor unmanned solar-powered aircraft is being developed by Israel Aerospace Industries and Technion, the country’s premier technical institution. Derivative UAVs will have longer flight endurance because they can absorb and store energy during the day and use it to propel the aircraft at night. IAI revealed a number of solar-powered UAV designs at the 47th Israeli aeronautics conference for flight and space sciences last week in Tel Aviv and Haifa. IAI officials also say they have joined a European consortium that is researching unmanned passenger aircraft. The goal is to reduce manpower costs and enhance flight safety with autonomous flight technology.
By 2015 the FAA should regulate:

How UAS will handle communications, command and control

How UAS will “sense and avoid” other traffic
Aviation Safety: Putting Risks in Perspective

Human Factors in Cockpit Automation
Technology has made Aviation Safer
Factors That Led To Breakthroughs in Major Fatal Accident Rates Since 1946

Pressurized Aircraft into fleet (L-049, DC-6 & B-377)
Earliest ILS (Glide slope, LOC & markers)

Broad implementation of VOR and DME
Radar introduced at selected towers
Vickers-700 Turboprop (1953 in UK, 1956 US)
DC-7 (1955), Lockheed Electra
Radio contact between ATC centers & en-route aircraft 1949-55

Long-Range radar (Centers)
Jet Engine; 707 (1958) & DC-8
VOR/DME integrated into autopilot (precision approaches)
Secondary radar

RNAV (processing VOR/DME & basic Instruments)
GPWS, TCAS; Early automation

FMS & Increased Automation
CRM with 6-Axis Simulator & FDR
Windshear
Cabin Safety

FOQA/ASAP & ATC Data
RJ Revolution
New Large Jets, RNP
Cooperative safety agenda

“Major” accidents include destroyed aircraft, both fatal and non-fatal, and non-destroyed aircraft with multiple fatalities. Rate for 2004 is pro-rated based on data through September.
1. Improve Safety of Emergency Medical Services Flights
2. Improve Runway Safety
3. Reduce Dangers to Aircraft Flying in Icing Conditions
4. Improve Crew Resource Management for Part 135 Ops
5. Require Crash-Worthy Image Recorders in Cockpits
6. Reduce Accidents and Incidents Cause by Human Fatigue
7. Improve Oversight of Pilot Proficiency
Automation refers to the techniques, methods, or systems used to operate or control a productive process by means of autonomous mechanical and/or electronic devices.
Basic Considerations:

The human being is flexible/adaptable to varying conditions, but has limitations performing repetitive tasks where consistent and reliable results are required.

The machine is very consistent and reliable performing repetitive tasks, but is not very flexible/adaptable to new and unexpected conditions.
Factors that have promoted the development of cockpit automation
New digital technology is highly reliable and requires minimum maintenance

New types of multi-function electronic displays that offer great flexibility to present information in various formats

Less physical space is required in the cockpit to install digital instruments
Computers allow a more efficient control of power plants.

More precise navigation and control of the aircraft.

Release flight crews from performing monotonous repetitive tasks.
- Decrease workload in the cockpit
- Goal to eliminate pilot error as a cause of incidents and accidents
- Improve the human-machine interface
- Enable certification of commercial aircraft with pilot and co-pilot only (no flight engineer/navigator)
Old IFR Flying = High Pilot Workload
OLD AUTOMATED SYSTEMS
(Analog Technology)

- Gyroscopes
- Auto Pilot
- Alarm Systems (advisory & emergency)
Sperry Autopilot
1922
Wiley Post: 7 Days around World
July 15-22, 1933 Sperry Autopilot
ECONOMIC AND SAFE AIRCRAFT OPERATIONS
NEW AUTOMATED SYSTEMS
(Digital Technology)

- Fly-By-Wire
- Auto-throttle
- Flight Director
- Flight and Navigation Control Systems
 - TCAS
- Automatic Landing
- Advisory and Emergency Information
- Anti-lock Braking Systems
First fly-by-wire System
Glass Cockpit

This term is used to describe highly automated cockpits using several computer-driven multi-function electronic displays that allow the presentation of different types of information, in different formats, but on the same screen.
Cockpit Automation in Commercial Aviation
Cockpit Automation in General Aviation
Advanced General Aviation Transport Experiments (AGATE)

Joint Sponsored Research Agreement
NASA/FAA/Industry/Universities

AGATE Work Packages
- Flight Systems
- Propulsion Sensors & Controls
- Integrated Design & Manufacturing
- Ice Protection Systems
- Training Systems
- Airspace Systems Infrastructure
- Ground Systems Infrastructure
NASA AGATE Vision From Early 1990's
How Could GA Safety Be Improved?

Eliminate the Cause and Mitigate the Effects of an Accident

• Reduce Pilot Workload / Human Error
• Improve Terrain Avoidance Capability
• Improve Low Speed (Stall) Handling
• Improve Weather Information to Pilot
• Improve Crashworthiness
Enhanced single pilot performance
Integrated aircraft automation
Autopilot with auto-throttle
Autoland
Open architecture
Intelligent auto-flight systems
Envelope protection and automation
What Automation Technology is Available in Today’s GA Cockpits?
“Technically-Advanced” Aircraft (TAA)

The pilot interfaces with one or more computers in order to fly, navigate, or communicate.

Aircraft with a minimum of an IFR-certified GPS navigation system with a moving map display, and an integrated autopilot.

Some TAAs have a multi-function display that shows weather, traffic and terrain graphics.
Technically Advanced Aircraft?

No

Yes

Moving map

Human Factors in Cockpit Automation
Examples of Technically Advanced Aircraft

Cirrus

New Cessna
Avidyne Cockpit
Garmin Cockpit
Terrain, weather, roads, cities

Terrain and towers
Technology Integration Issue
Updating the Small Airplane Fleet for Safety

- > 210,000 Airplanes in US - 89% Piston
- Average age >35yrs
- Few New Airplane Designs
- Retrofit issues to make them safer

US Active Airplane Fleet

- Piston 89%
- Turbojet 4%
- Transport 4%
- Turboprop 3%
Cirrus Sr20 “Blue Button” Recovery
Cirrus GFC 700 “Level” Button Introduced in May 2008
However, Cockpit Automation in GA has not Achieved the Desired Safety Goals
Glass cockpit technology has not significantly improved safety of small light aircraft.

During the 2002-08 period conventionally equipped aircraft suffered 141 accidents (16% fatal), while glass-equipped aircraft suffered 125 accidents (28% fatal).

The NTSB made 5 recommendations related to equipment specific training and one related to testing requirements.
Other Advanced Technologies
Visual Augmentation Systems (Synthetic Vision)

Universal

Chelton
Visual Augmentation Systems
(Night Flying)
Fusion of the SVS PFD with infrared enhanced vision is another innovation from the Rockwell Collins team. In this view, the pilot can see his 3D pathway in the sky, obstacles in the SVS database and IR EVS imagery—the actual terrain in front of the aircraft—in real time.
Digital Personal Assistants
The “Pilots Personal Assistant,” essentially a portable computer that stores checklists, charts and approach plates, manuals and logbooks, is an Epic system option. It can interface with aircraft avionics or be removed for flight planning.
I Pads are being used in the cockpit (except for navigation purposes, during takeoff and landing)
Pathway In The Sky Displays

Human Factors in Cockpit Automation

Federal Aviation Administration
Enhanced Ground Proximity Warning System

EGPWS
Head-Up Displays
Head-Up Displays
NASA's runway incursion prevention system (RIPS) combines GPS, datalink and ADS-B with a HUD interface. Virtual cones delineate taxi routes while position and speed data are provided in text form.
Helmet-Mounted Displays
- Active Matrix Liquid Crystal Display Image display
- Sensor fusion
- Binocular 40 degree by degree field-of-view
- Integrated day and night camera
- Ejection Safe to 600 knots equivalent air speed
Head-Mounted Displays for Civil Aviation
FLEXIBLE VIDEO SCREEN prototype from Universal Display Corporation gives new meaning to the words "motion picture."
Retinal Displays
Seeing is Believing
The overall objective of the Artificial Retina Project is to develop a bioelectronic implant that restores useful vision to patients blinded by retinal diseases. As one of the five national laboratories participating in this project, LANL is developing and applying techniques for functional imaging of retinal activation using fast intrinsic optical signals and microelectrode arrays to characterize information encoding and processing by the retina, and to validate the efficacy of electrical stimulation. The LANL team also develops advanced concepts for device design, manufacturing, and stimulation protocols for prosthetic systems.
AUTOMATED SYSTEMS OF THE FUTURE

- 3D Holographic Displays
- Artificial Intelligence
- Virtual Reality Systems
- Vision-Controlled Systems
- Voice-Controlled Systems
- Mind-Controlled Systems
Qantas flight QF31 from Sydney to Singapore a disruptive passenger who was under the influence of drugs or alcohol was restrained and later detained by the police that questioned him after he attempted to control the flight with mind power.
Undesirable Consequences of Cockpit Automation
Always be prepared to deal with risks in disguise!
Increase in pilot's mental workload when flying below 10,000 and in the terminal area

Increase in "head down time" associated with the re-programming of computers in response to ATC directives

Higher risk of human errors associated with the initial and subsequent programming of computers
Seu período de testes esgotou!

Favor registrar-se para continuar usando este software!

OK
Complacency, monotony, boredom, and lack of vigilance during the low workload portions of a flight that can lead to inadequate response to unexpected emergencies.

Difficulty to identify problems in the operation of automated systems (hardware & software), including false alarms (positive & negative).
- Decrease of pilot motivation and satisfaction to fly
- Concern about decreased performance in manual piloting skills
- Loss of situational awareness
- Tendency to use automated systems in response to sudden operational changes during flight, even when there is not enough time to re-program computers
Pilot reluctance to take manual control over a malfunctioning automated system due to overconfidence on computerized systems.

Sudden and unexpected malfunctions. Automated systems usually do not provide information about progressive changes that lead to a malfunction until the malfunction occurs.
Problems involving pilot transition between equipment with different types of automated systems

Transition problems between aircraft with glass cockpits and aircraft with minimum automation

Digital displays eliminate small errors but lead to severe errors (am. vs pm.)
Current ATC systems are not compatible with the advanced capabilities (climb and descent profiles) of automated aircraft.

It is difficult for one crewmember to see what the other is doing because the multifunction displays can show different information at the same time.

A transference of authority from the pilot to the first officer can happen as a function of skills with automated systems.
"If you can't convince them, confuse them"

President Harry Truman
Clear Communications are Essential
PILOT CONFUSION

Pilots operating highly automated systems frequently ask themselves the following questions about such systems:

¿ What is it doing?
¿ Why did it do that?
¿ What is it going to do next?
The most frequent cause of confusion among pilots flying aircraft with highly automated systems is commonly known as "mode confusion".

EXAMPLE

In an automated flight control system, the transition between vertical climb mode, altitude capture, and altitude hold (level-off) occurs rapidly and the system responds differently under each mode of operation.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT) - ASRS - (Feb 90-Ene 94)

- Analyzed 184 incidents related to mode confusion
- 74% involved confusion/errors in vertical navigation
- 26% involved confusion/errors in horizontal navigation
Computer Database Error
Automation System Failure
Crew Coordination
Unknown Failure
Problems Understanding Automation
Mode Transition Problems
Programming Error
"If something can go wrong, then it will go wrong"

Murphy's Law
What is the primary function of a pilot in an automated cockpit?

FLY THE AIRCRAFT
or
CONTROL AND MONITOR AUTOMATED SYSTEMS
In general, the main problem with highly automated cockpits is the lack of a common design philosophy to ensure the development of a harmonious interface between the pilot and the automation.

Earl Wiener
The pilot is the most complex, capable, and flexible component of any air transport system, and, as such, is the most adequate to determine the optional use of all available resources in any given situation.
Cockpit automation must be used to support and augment, but not to replace the functions performed by a human being during the operation of an aircraft.
Principles of Human-Centered Automation

- Pilots must have an active role in controlling or managing the systems to which they delegate control of the aircraft.

- Pilots must be informed on real-time regarding the status and progress of tasks, operations, or systems.
Pilots must be able to monitor the automated systems because automation can fail.

Automated systems must be able to monitor pilot performance because humans can fail.

Automated systems must be predictable to allow pilots to evaluate system performance and quickly detect and recognize malfunctions.
Through cross-monitoring, pilots and automated systems need to understand what each is trying to do.

Automated systems must allow the pilot to take total manual control over a malfunctioning system.

Automated systems must maintain the number of false alarms (positive and negative) within acceptable limits.
Automated systems must allow the pilot to select the desired level of automation.

Automated systems must prevent excessive levels of pilot workload.

Automated systems must allow the corroboration/confirmation of the information programmed by the pilot.
How to Certify New Technologies?

ISSUES

• Very hard to develop specific standards - too many variables
• Develop performance standards because they are less restrictive for innovation
• Performance standards allow for subjectivity and can be vague
• Applicants would like assurances that what their designs will be certifiable
How to Certify New Technologies?

SOLUTIONS

- Early FAA involvement
- Multi-pilot evaluations – bench tests, simulators, and flight test
- Evaluations conducted by flight test human factors specialist – one person
- Try to use the same core group of test pilots for all evaluations
How to Certify New Technologies?

SOLUTIONS

- Getting more involved in system development
- Also more involved in post-certification pilot training
 - FITS – voluntary training programs
 - Emphasizing specific areas based on accident studies and historically weak pilot performance
How to Train Pilots to Fly Technologically-Advanced Aircraft (TAA)
“FITS”
FITS was developed by the Embry-Riddle Aeronautical University and the Aerospace Department at the University of North Dakota through the FAA Air Transportation Center of Excellence for General Aviation Research (CGAR)
FITS demonstrated that Scenario-Based Training (SBT) was as effective or better than traditional or Maneuvers-Based Training (MBT).

FITS trained pilots are more conservative with IFR decision making.
What is the best approach to share final authority between the pilot and the automated systems?

What is the level of job satisfaction and motivation of a pilot who flies a highly automated aircraft?

What is the perceived level of responsibility of a pilot who flies a highly automated aircraft where the automated systems have final authority?
What is the best criteria for the selection of pilots who operate highly automated cockpits?

What is the most effective combination of monitoring and control tasks for pilots flying highly automated aircraft?

What are the minimum requirements to maintain pilot proficiency to manually operate a highly automated aircraft?
Incidents and Accidents Involving Cockpit Automation
A Boeing 707 flying at 35,000 ft over Terranova

Autopilot was disconnected accidentally and nobody noticed

Aircraft entered a spin

The crew was able to regain control of the aircraft at 6,000 ft above the Atlantic Ocean
The crew of a Lockheed L-1011 was trying to determine the cause of a landing gear alarm. The autopilot was disconnected accidentally and nobody noticed. The aircraft initiated a slow descent from 2,000 ft and crashed in a swamp.
The crew of an Airbus 320 was demonstrating a take off with a simulated engine failure.

When the autopilot was activated the system selected an altitude capture mode where there is no AOA limit.

The aircraft exceeded an angle of attack of 31 degrees.

The aircraft lost speed suddenly, became uncontrollable, and crashed.
Airbus 320 during touch down

Air/ground logic did not properly activate and caused a delayed use of ground spoilers and reverser

Aircraft overran the runway and two people were killed
Pilot versus autopilot dispute in an Airbus 310 caused aircraft to go out of trim

Followed by 5 pitch cycles peaking at 70-80 deg. nose up and 30 deg. nose down

Airspeed varied from 300 kt to below 30 kt in 4,000 ft cycles

Roll angles exceeded 100 deg. Aircraft was recovered